摘要
为了进一步描述时间因素对用户行为的影响,进而提高推荐系统的推荐效果,综合考虑了用户的长期行为特征和短期行为特征提出一种基于嵌入式向量和循环神经网络的用户行为预测方法。依据推荐系统中的所有用户行为数据,将用户和商品嵌入到相同的特征空间,并通过嵌入式向量反应用户的长期行为特征。针对每个用户,依据其历史行为的时间序列,基于循环神经网络建立该用户的行为预测模型,从而描述该用户的短期行为特征。实验结果表明,提出的方法与特征级时间序列分析等方法相比具有更好的推荐效果。
-
单位河南师范大学新联学院; 南阳理工学院