摘要

针对支持向量机在电力系统短期负荷预测中,预测模型的精度易受训练样本数据的影响,且训练时间长的问题,本文提出1种基于离散Frechet距离和支持向量机相结合的预测方法,通过建立离散曲线相似性的数学模型,找出与基准日负荷曲线形状相似的历史日负荷曲线,以相似日的负荷数据及相应的气温、星期类型等影响因素作为训练样本对支持向量机进行训练,有效地减少了训练数据量,使得训练样本更具针对性。采用East-SlovakiaPowerDistributionCompany提供的负荷数据对提出的模型进行验证,并与标准支持向量机的预测结果对比,本文的方法能够科学合理地选取相似日,提高了支持向量机短期负荷预测的精度。