设K/F是整体函数域的素数l次循环扩张,F是有理函数域Fq(T)上的有限可分扩域.利用函数域的Conner-Hurrelbrink正合六边形与源于短正合列的正合六边形,本文在l整除与不整除基域F的理想类数的情形下,分别研究函数域K理想类群的Sylow l-子群的结构.同时,利用得到的结果,本文给出了基域F的单位为K中元素norm的若干条件.