摘要
针对野外低温环境下,基于铵离子选择性电极的氨氮传感器检测失准问题,通过分析传感器检测原理,在0~30℃进行了水质标样氨氮检测对比实验,探究了温度变化对氨氮传感器输出结果的影响;将粒子群优化算法(particle swarm optimization, PSO)与支持向量回归(support vector regression, SVR)结合,建立了氨氮检测的PSO-SVR温度补偿模型,并与最小二乘多项式回归、传统SVR建立的温度补偿模型对比,PSO-SVR温度补偿模型具有较高的决定系数和较小均方根误差(root mean square error, RMSE)。在实际水样检测实验中,经过该模型补偿后氨氮传感器的输出值与实验室内根据《水质氨氮测定》(HJ 535—2009)测得的氨氮标准值之间最高偏差为4.76%,最低偏差为0.64%,偏差范围符合预期补偿目标,表明模型具有较高的温度补偿精度,对非训练数据具有良好的泛化能力,能够满足实际使用的精度要求。
-
单位机电工程学院; 长春理工大学