摘要
地震数据偏移成像是地下介质反射系数估计的重要方法之一,其结果通常受子波影响而波数带展布有限。有效拓展成像结果的波数带、提高空间分辨率是宽带反射系数估计的一个重要目的。为此,首先从反演成像的角度分析,指出子波和观测系统照明是影响成像结果分辨率的两个主要因素;其次,基于卷积神经网络(CNN),利用宽频子波构建标签,将常规成像结果作为输入,利用CNN挖掘其中的映射关系,提出了相应的深度学习算法子波整形反褶积方法;然后,针对反褶积中初始子波估计不准确的问题,设计了子波与反射系数串联、迭代、更新的实现方案,定制的宽频子波能兼顾低波数和高波数信息,用于训练网络时可以更好地恢复宽带的反射系数;最后,利用已知模型进行网络的预训练,将基于目标数据体提取的有效子波作为靶区数据反褶积的初始子波,进行子波整形反褶积处理,并通过薄层模型测试了该方法的正确性和可靠性。实际资料处理结果表明了该方法具有较好的应用潜力。
- 单位