摘要
在水产养殖中,检测鱼类的摄食状态对于投喂控制具有重要意义。以镜鲤为实验对象,提出了一种基于鱼群图像的形状及纹理特征和BP神经网络的鱼群摄食行为检测方法。首先,对采集到的图片进行背景减、灰度化、二值化等处理,得到图像形状与纹理信息,然后计算鱼群图像的形状参数和图像熵,最后利用BP神经网络建模,对鱼群的摄食状态进行检测识别。结果显示,本方法的正确识别率达到98.0%。与单一的基于纹理的检测方法相比,不仅可以把因水面抖动、水花等不利因素的干扰作为纹理的特有属性进行分析,而且考虑了图像的形状信息,提高了检测的准确性,可以用于指导水产养殖中的精准投喂控制。
-
单位上海海洋大学; 国家农业信息化工程技术研究中心; 北京农业信息技术研究中心