摘要
传统的循环神经网络,如长短期记忆网络和门控循环单元,记忆能力有限而且记忆数据的存取不够灵活,对较长序列的特征捕捉有着先天的不足。记忆网络具有存储长时记忆的特点,而且对于记忆数据的存取更加灵活多变,因此本文在基于会话的推荐算法中引入了记忆网络。本文设计了一个层次化的推荐模型,模型分为2层。第1层为会话级的GRU模型,此模型用来刻画当前会话的序列特征,从而预测下一个项目。第2层为用户级的记忆网络模型,这个模型用来刻画用户长期兴趣的变化。本文提出的模型能有效地捕捉到用户的短期和长期兴趣,进而提升推荐的性能。公开数据集上的实验证明,在会话个数为10相对于会话个数为5的性能提升对比中,本文所提带有用户记忆矩阵的分层网络算法在召回率和平均倒数排名的提升度上相对于分层门控循环单元都有4%的增加。
- 单位