摘要

针对卫星遥感图像场景分类数据集中存在的局部区域特征异常问题,提出一种采用批处理协方差层的神经网络(CovNN)模型进行遥感场景分类的方法。该方法通过计算全输入通道的局部区域均值实现一种3D批处理协方差算法,能够有效消除局部区域均值的影响,从而更好地处理局部光照过强和局部区域存在无关特征的问题。将其应用于存在局部光照异常和局部无关特征问题的卫星采集AID数据集和NWPU-RESISC45数据集中,实验表明CovNN在两个数据集上均取得了超过现有卷积神经网络(CNN)的召回率,可有效降低图像局部区域特征异常的不利影响。