摘要
Flying-V是一种典型的非传统布局方式,根据其布局方式的特性,针对仓储货位分配优化问题,以货物出入库效率最高和货物存放的重心最低为优化目标,建立了货位分配多目标优化模型,并采用自适应策略的遗传算法(GA),以及粒子群算法(PSO)进行求解。根据货位分配的优化特点,在GA算法的选择、交叉和变异环节均采用自适应策略,同时采用惯性权重线性递减的方法设计了PSO算法,有效地解决了两种算法收敛速度慢和易"早熟"的问题,提高了算法的寻优性能。为了更好地表现两种优化求解算法的有效性和优越性,结合具体的货位分配实例利用MATLAB软件编程实现。通过对比分析优化结果表明,PSO算法在收敛速度和优化效果方面相比于自适应GA算法更具有优势,更加合适于解决Flying-V型仓储布局货位分配优化问题。
-
单位南昌大学机电工程学院; 经济管理学院; 南昌大学