摘要

水印对于电子地图版权的保护十分重要,开展可视水印的去除研究有助于从攻防对抗的角度评价可视水印的有效性,进而提高电子地图可视水印的抗攻击研究水平。针对已有基于深度学习的可视水印去除方法存在训练样本量大、效率低、可视水印去除后有残留或要素丢失等问题,本文提出一种基于条件生成对抗网络(CGAN)的电子地图可视水印去除方法。该方法的模型主要由一个生成器和一个判别器组成,其中生成器采用U-Net结构,保证去除可视水印后生成的地图区域的真实性,判别器则采用基于区域判别的全卷积网络,通过对抗训练来区分生成的地图瓦片与真实地图瓦片之间的差异,使得可视水印去除后重建的电子地图更接近真实地图。实验表明,本文提出的方法简单易行,模型训练速度比基于全卷积网络的算法快4倍,能够去除文字、彩色图像及二者混合等模式的可视水印,可实现Google、高德、百度等国内外地图厂商提供的导航电子地图、遥感影像等多种地图瓦片上的可视水印批量去除,无需人工干预,且水印去除后的地图瓦片与原始真实地图瓦片有着良好的结构相似性。