摘要
针对滚动轴承运行环境复杂,传统故障诊断方法难以从强非线性信号中提取有效故障特征,且无法充分利用信号自身特征的问题,提出CNN-LSTM-SVM故障诊断方法。以滚动轴承加速度寿命实验数据为研究对象,基于卷积神经网络(Convolutional Neural Network, CNN)与长短期记忆网络(Long Short Term Memory, LSTM)技术提取信号特征并结合支持向量机(Support Vector Machine, SVM)完成故障分类。结果显示:该方法具有良好外推性能,在变演变阶段下的平均准确率达到95.92%,与现有方法相比,至少高出11.34%,且在噪声环境下的诊断准确率均高于现有方法,稳定性更佳,体现良好的鲁棒性与泛化性。
- 单位