摘要

为了提高民航发动机滚动轴承故障诊断正确率,提出基于改进天牛须搜索算法优化Elman神经网络的诊断模型。针对天牛须搜索算法易早熟等缺陷,对天牛质心位置和步长更新操作进行改进,并用改进算法优化Elman网络的学习率、权重和阈值。使用IBAS-Elman模型对滚动轴承故障和正常状态进行诊断,并分析Elman网络延迟向量比例因子对滚动轴承故障诊断率的影响。为了验证IBAS-Elman模型的有效性,将天牛须搜索算法、萤火虫算法和遗传算法作为对比算法。实验结果表明:改进天牛须搜索算法收敛精度优于对比算法。