摘要

针对城市三维环境下LiDAR点云数据密度大、离群噪点多、分布散乱不利于后期点云帧间匹配的问题,提出一种应用于城市环境下大规模三维LiDAR点云帧间匹配的预处理方法。首先,将点云数据转化为均值高程图,利用网格之间的高度梯度对点云进行地面分割处理;然后,通过三维体素栅格划分的方法改进了DBSCAN聚类算法,用改进后的VG-DBSCAN对点云进行聚类,聚类后目标点云与离群点分离,从而剔除点云中的离群噪点;最后,采用Voxel Grid滤波器对点云降采样。实验结果表明,所提方法可以对点云数据进行实时的预处理,平均耗时为132.1 ms;预处理之后点云帧间匹配的精确度提高了2倍,平均耗时也仅为预处理前的1/6。

  • 单位
    中国人民解放军军事交通学院