摘要

采用了一种基于小波包能量熵结合集合经验模态分解(Ensemble Empirical Mode Decomposition, EEMD)方式完成对高速列车轴箱轴承仿真振动信号和实测振动信号的故障诊断。在完成仿真轴承应力状态分布分析和仿真振动信号故障提取方式检验以及实测振动信号时域参数分析和对轴承故障初步诊断的基础上,对振动信号进行三层小波包分解以及降噪处理;将处理后的剩余信号进行重构,再对重构后的8个小波包频段进行能量熵和能量百分比的计算,找出所含剩余信息量较大的频段,进行EEMD方式分解;对分解后的IMF1分量进行频谱和包络谱转换,从而准确提取出轴箱轴承故障特征信号,完成轴承早期微弱故障特征提取。

全文