摘要

针对目前基于数据流关联规则挖掘技术的入侵检测系统响应速度不够快和检测精度不够高的问题,提出一个基于数据流最大频繁模式的入侵检测系统模型MMFIID-DS;设计各种剪枝策略,挖掘经过训练学习后的正常数据集、异常数据集和当前检测数据流的最大频繁项集,建立系统的正常行为模式、异常行为模式和用户行为模式,达到极大缩小搜索空间的目的,提高系统的响应速度;结合误用检测和异常检测2种入侵检测方法进行实时在线检测入侵,提高系统的检测精度。理论与实验结果表明:MMFIID-DS入侵检测系统具有较好的性能。