摘要
灵活性负荷聚合商通过需求侧响应整合用户侧资源参与电力市场,提高系统可靠性和经济性并获得收益。但用户对用电方式和成本的偏好将对其响应电量带来不确定性,进而影响聚合商的电量申报精度和市场收益。文中将参与需求响应的负荷资源作为广义需求侧资源,构建用户响应偏好模型。进而利用贝叶斯推断对用户偏好进行学习,获得响应电量的概率性估计,生成最优响应计划。最后,建立基于偏差电量考核的聚合商市场收益模型,采用美国PJM市场用户报价及典型日交易数据进行算例仿真。仿真结果验证了贝叶斯推断对用户偏好学习的有效性,以及考虑用户响应偏好的广义需求侧资源响应优化的经济性。
- 单位