摘要

针对传统复原算法在退化图像复原过程中存在明显滞后的问题,建立了一种改进的鲸鱼算法(Improved Whale Optimization Algorithm,IWOA)-BP神经网络图像复原模型。首先,通过Tent混沌增强初始种群的均匀性和多样性;其次,采用非线性权重和改进的收敛因子,平衡算法的全局搜索与局部寻优能力;最后,结合Levy飞行策略更新个体位置,帮助算法跳出局部最优。随后采用经典图像数据,建立IWOA-BP模型。选取PSNR、SSIM和NMSE作为网络模型的评价指标,与BP、GWO-BP、WOA-BP进行对比。实验结果表明IWOA-BP模型图像复原视觉效果更好,提高了图像复原的质量。