基于Hadoop的分布式并行增量爬虫技术研究

作者:刘芳云; 张志勇*; 李玉祥
来源:计算机测量与控制, 2018, 26(10): 269-275+308.
DOI:10.16526/j.cnki.11-4762/tp.2018.10.058

摘要

面对多媒体社交网络中在线视频的爆炸式增长,使用单机模式下爬虫提取新视频页面的效率低下,为此,提出一种基于Map/Reduce的并行算法,大大提高了爬虫的效率;但是为了进一步改善数据冗余问题,减少过时页面的更新,改进了一种精度感知增量更新算法,利用监控技术监控网页变化情况,分析网页更新模式,增加新鲜度评估和降维处理,使用混合整数二次规划方法为发生更改的网页制定最优的刷新策略;实验证明,相比单机模式下定期频繁的刷新策略,该并行增量方法以原刷新代价的36.7%获得了79%的信息精确度,爬虫效率提高了167倍。