摘要

为提高船舶交通流量预测的准确性,针对BP神经网络随机确定初始权值和阈值的缺点,提出一种基于人工蜂群算法(Artificial Bee Colony, ABC)改进BP神经网络的ABC-BP船舶交通流量预测模型。利用人工蜂群算法全局搜索能力和不易陷入局部最优的特点,对BP神经网络的初始权值和阈值进行优化,并以青岛港船舶交通流量统计数据为例,进行实例验证。结果显示,与传统的BP神经网络以及遗传算法(GA)优化的BP神经网络预测模型相比,ABC-BP模型平均绝对百分比误差(MAPE)低至3.361 8%,不仅避免了局部最优,而且通过简单的参数设置就能够显著提高船舶交通流量的预测精度。表明本模型在船舶交通流量预测上是有效可行的。