摘要

分析了现有跳频信号稀疏重构算法的基不匹配问题,导致离散字典的稀疏表示能力变差,严重影响稀疏重构算法的性能。针对这种情形,提出了基于自适应网格的变分贝叶斯稀疏重构算法。该方法通过对字典不断地加权聚类和缩放处理,实现字典的自我更新,使得参数网格更加精细化。仿真结果表明,该方法具有良好的抗噪性能和交叉项抑制能力,同时缓解了稀疏重构算法的基不匹配情形,时频聚焦性进一步提高,能够在较低信噪比条件下,获取较高时频分辨率的时频矩阵,可以更精确地完成后续跳时刻检测、跳周期及跳频率等参数估计。