针对协同过滤算法无法有效处理数据稀疏的问题,提出1种基于受限玻尔兹曼机的Web服务质量(QoS)预测方法;第1阶段使用受限玻尔兹曼机模型对所有缺失的QoS值进行预测,并对原始的QoS矩阵进行填充;在第2阶段基于该QoS矩阵进行全局邻居筛选,同时将受限玻尔兹曼机引入到用户近邻的协同过滤模型中,以预测目标QoS值。研究结果表明:该方法能提高QoS预测精确度,在一定程度上降低数据稀疏对预测的影响。