摘要
高光谱图像在采集中通常受到各类噪声的污染,存在多种不同程度的退化,传统的高光谱图像去噪仅考虑图像的低秩性而忽略了高光谱图像的相邻波段之间的相似性,缺乏空间信息。基于低秩矩阵模型和空间光谱全变分正则化,该文提出一种将不同噪声统一去除的框架,从而对退化的高光谱数据进行复原。算法基于低秩矩阵恢复抑制分离稀疏噪声,并保证图像的局部低秩性;采用空间光谱全变分正则化模型,增强全局空间光谱的平滑性,减少伪影。由此,建立两者相结合的正则化模型,并用增广拉格朗日乘子法优化求解。仿真实验结果表明:与其他高光谱复原方法相比,在峰值信噪比和结构相似性方面,所提算法数值指标较高,提高了去噪性能。
-
单位自动化学院; 南京邮电大学