摘要

目的 探讨活性屏等离子体源渗氮技术提高马氏体不锈钢硬度与耐蚀性能的可行性。方法 将2Cr13马氏体不锈钢进行350~550℃、6 h活性屏等离子体源渗氮处理,采用光学显微镜(OM)、电子探针显微分析仪(EPMA)和X射线衍射仪(XRD)分析渗氮层的组织、成分和相结构,使用显微硬度计测试渗氮层的显微硬度,利用电化学腐蚀试验解析评估渗氮层的耐蚀性能。结果 经活性屏等离子体源渗氮处理后,可在马氏体不锈钢表面形成厚度为2~45μm,N原子分数为20%~25%的渗氮层,其表面显微硬度达1050~1350HV0.25,是基体硬度的4~5倍。350℃时,渗氮层以ε-Fe2-3N相为主,且含有少量αN相;450℃时,渗氮层由αN、ε-Fe2-3N和γ’-Fe4N相构成;渗氮温度升至550℃时,渗氮层由α-Fe、CrN和γ’-Fe4N相构成,αN、ε-Fe2-3N相消失。350、450℃时,渗氮层在3.5%NaCl溶液中的阳极极化曲线出现明显钝化区,而未渗氮的2Cr13不锈钢并未发现钝化区,自腐蚀电位Ecorr由未渗氮的–308mV(vs.SCE)分别升高至–151、–104 mV,腐蚀电流密度Jp均维持在0.03~0.2μA/cm2内。550℃时,渗氮层表面因Cr N相析出,耐蚀性能相对恶化。电化学阻抗谱结果显示,350、450℃时,渗氮层表面钝化膜电荷转移电阻Rct由未渗氮的5.25×104?·cm2分别增至2.76×105、3.18×105?·cm2,双电层电容Cdl由未渗氮的473μF/cm2分别降至74、103μF/cm2,说明渗氮层表面形成的钝化膜更厚,致密性更好,能有效阻碍反应离子的渗透和迁移,耐蚀性能显著提高。结论 活性屏等离子体源渗氮技术处理2Cr13马氏体不锈钢可以获得高的表面硬度和优异的耐腐蚀性能。

全文