摘要

针对海鸥算法(SOA)在迭代寻优过程中容易陷入局部最优、收敛速度慢以及寻优精度低等缺陷,提出一种黄金正弦引导与sigmoid连续化的海鸥优化算法(GSCSOA)。在海鸥迁徙阶段,使用sigmoid函数作为非线性收敛因子引导海鸥搜寻过程,使得算法前期保持更强的全局寻优能力,后期更快收敛。在海鸥扑食阶段,引入禁忌搜索的思想,使得海鸥始终向着置信度更高的区域移动,并且在一次迭代中最优位置持续变化,从而提高寻优精度。之后使用黄金正弦机制指引种群位置更新,缩小搜索范围,提高局部寻优能力。最后,用12个测试函数和CEC2014函数集对改进算法进行测试,并与原算法以及其他算法的实验结果进行对比,结果证明改进的海鸥算法在收敛速度和精度上的表现更优。

全文