摘要
目的 基于紫外可见光谱和化学计量学方法建立1种快速检测双黄连口服液质量的方法。方法 采集双黄连口服液紫外可见光谱数据,并使用主成分分析筛选剔除异常样本数据。采用Kennard-Stone算法将所有样本按照7∶3的比例划分为训练集和测试集。采用一阶求导、标准正态变量变换对数据进行预处理,然后结合竞争性自适应重加权采样法提取特征波长,最后将支持向量回归(support vector regression,SVR)、最小二乘支持向量回归(least squares of support vector regression,LS-SVR)、前馈型反向传播(back propagation,BP)神经网络3种方法用于可溶性固形物(soluble solids content,SSC)、总黄酮(total flavones,TF)的定量分析模型的建立。结果 3种模型的决定系数R2均≥0.816 8,均方根误差RMSE均≤4.378 2,均获得了较好的预测效果。对测试集SSC及TF预测结果进行对比发现,与BP神经网络、LS-SVR相比,SVR模型获得了最大R2以及最小RMSE。SVR-SSC模型的R2为0.999 8,RMSE为0.260 3,SVR-TF模型的R2为0.998 3,RMSE为0.543 3。结论 紫外可见光谱结合SVR可以提供1种双黄连口服液质量的高精度快速现场检测方法。
- 单位