摘要

为监测建筑火灾事故区域的危险程度,实现更加安全、高效的火灾应急救援,以通廊式建筑为研究对象,基于转置卷积神经网络及数值模拟方法开发1种可实时预测走廊位置处烟气扩散和温度分布的神经网络模型。首先,依托Python建立包含全连接、转置卷积、反池化等在内的19层神经网络模型的整体架构;其次,建立包含99个火灾场景,共7 920组图像数据的火场信息数据库用于模型训练;最后,使用测试集对模型进行可靠性验证。研究结果表明:烟气(温度)预测模型在不同火灾场景下的预测精度达到95%,训练完成后模型的预测时间一般为1~2 s。研究结果可为应急策略的快速制定提供数据参考。

全文