摘要

针对泵注系统轴承振动信号传递路径长,故障特征微弱而导致传统机器学习方法难以进行故障诊断的问题,提出一种基于改进变分模态分解(IVMD)和一维卷积神经网络(1DCNN)的泵注系统轴承故障诊断模型。首先,通过多个传感器采集泵注系统轴承振动信号;然后,利用Elastic回归替换Ridge回归构造IVMD并将轴承振动信号自动分解,采用改进峭度指标进行筛选重构实现振动信号的有效降噪;最后,将降噪后的重构信号输入适用于工业多传感器系统的1DCNN进行自动特征提取和故障诊断。试验结果表明,IVMD-1DCNN模型的故障诊断准确率达99.27%,相比于其他方法具有较大优势。另外,对1DCNN学习到的卷积核进行可视化,也在一定程度探讨了深度学习故障诊断的可解释性问题。

  • 单位
    内蒙古交通职业技术学院