摘要

大型风力发电机组的轴承振动信号往往呈现非线性、非平稳特性,目前常用故障诊断方法在实际应用中误诊率较高。为此提出基于聚合经验模态分解(EEMD)和Teager能量算子提取信号的故障特征,并采用核熵成分分析(KECA)实现轴承故障的监测与诊断策略。该方法首先基于EEMD分解对信号提取单分量本征模态函数,以满足Teager能量算子对信号的单分量要求;之后基于Teager能量算子解调算法提取特征向量;最后,将特征向量作为输入构建KECA诊断模型,实现故障的监测与诊断。将该方法应用于模拟风机滚动轴承故障试验台采集数据,结果表明该方法可有效提取非平稳信号中的故障特征,实现对风机轴承的故障识别。

全文