摘要
相变储热技术作为当前储热研究领域中的重点,在能源利用效率的提高方面效果显著。作为高效储热技术之一,固-固相变储热主要通过固体相变实现热量的吸收和释放。相比于固-液相变储热,固-固相变储热相变过程中体积变化小,同时无明显相分离、泄露等现象,在节能、环保和新能源等诸多领域中具有巨大的发展潜力。有机固-固相变储热材料主要包括高分子聚合物、多元醇以及层状钙钛矿,其中聚合物类主要由“软相”大分子借助化学键连接“硬相”聚合物骨架形成。“软相”作为相变过程的主体,升温至转变温度发生固-液转变;而“硬相”骨架限制其宏观流动,起到维持固体形态的作用。多元醇在低温下呈现层状晶体结构,层间分子通过氢键相连接,进行固相转变时部分氢键断裂,分子转向面心立方晶体结构。层状钙钛矿则是由有机层的长链烷烃以及无机层的金属配位四面体[MX42-]交替组合而成的夹层状晶体结构,其固-固相变机理与高聚物相似,即有机层的长烷基链进行有序-无序转变,而无机层结构保持不变。现阶段在有机固-固相变储热材料的制备技术方面,聚合物类材料主要通过接枝共聚、嵌段共聚等方法,以聚乙二醇为相变介质借助化学键结合到聚合物骨架上而形成;多元醇适用于中高温工作条件下,其相变温度和相变焓与所含氢键数相关,通过多元复合配比可调整其热物性能;层状钙钛矿的热物性取决于其组成烷基链的长度,可选择制备多元体系以拓宽相变温度范围。近年来,为满足实际应用中对高储热功率的要求,除了致力于开发新型相变储热材料外,研究人员对相变材料的导热强化技术也在不断改进中。本文基于固-固相变的机理,针对当前国内外固-固相变储热技术的研究,分别从相变行为的特征、材料制备、性能优化技术和应用等方面对固-固相变储热技术进行了详细的总结和分析。并在此基础上,从材料制备和相变机制控制的角度,对固-固相变储热材料研究面临的技术壁垒以及未来的研究方向进行了科学的展望,以期对新型储热材料,尤其是中高温固-固相变储热材料的开发提供有价值的专业参考。
- 单位