摘要

目标检测是自动驾驶的重要前提,是与外界信息交互的重要环节。针对夜间远处行人检测识别精度低、漏检的问题,提出一种针对检测小尺寸行人的YOLOv5-p4的夜间行人识别模型。首先,通过增加更小目标的检测层,引入BiFPN特征融合机制,防止小目标被噪声淹没,使网络模型可以更聚焦于物体的细小特征;同时使用K-means先验框聚类出更小目标的锚框,并且使用了多尺度的数据增强方法,增加模型的鲁棒性。使用了MetaAcon-C激活函数与EIoU回归损失函数使模型收敛效果更好,提升了算法远距离行人的检测的准确率。最后在红外行人数据集FLIR上验证改进后的YOLOv5-p4模型对于行人的检测能力,实验结果表明该方法与传统方法相比,准确率从86.9%提升到90.3%,适合用于红外图像中的行人检测。