针对冷水机组能耗受多因素影响的特点,本文提出了一种基于主成分分析(Principal Component Analysis,PCA)和支持向量机(Support Vector Machine,SVM)的冷水机组能耗预测模型。采用交叉验证和网格搜索法优化支持向量机(SVM),将PCA-SVM的预测结果与优化后的SVM进行比较,结果表明:优化后的SVM模型的拟合优度较未经优化的模型提升了12.88%,建模时长较未经优化的模型缩短了80%,实现了在提升预测精度的同时节省了计算资源。