摘要

为提高动态数据流特征提取的计算效率与性能,设计一种基于粗糙集与人工蜂群算法的动态数据流特征选择算法。修改人工蜂群算法中雇佣蜂阶段与侦查蜂阶段的位置更新方程,降低人工蜂群算法早熟收敛的几率,增强人工蜂群算法的鲁棒性,使其满足动态特征选择算法的稳定性需要。使用粗糙集定义数据流增量数据的适应度函数,人工蜂群算法从旧特征子集与增量数据提取新的全局特征子集。基于10个公开的数据集分别进行特征提取与分类实验,实验结果表明,该算法在保持较高分类准确率的前提下,明显减少了特征数量,实现了较高的动态特征计算效率。

全文