摘要

海参目标检测是实现海参自动化捕捞的前提。为了解决复杂海底环境下背景和目标颜色相近以及遮挡导致的目标漏检问题,本文在Faster R-CNN框架下,提出了Swin-RCNN目标检测算法。该算法的骨干网络采用Swin Transformer,同时在结构上融入了多尺度特征提取层和实例分割功能,提高了算法的自适应特征融合能力,从而提高了模型在复杂环境下对不同尺寸海参的识别能力。实验结果表明:本文方法对海参检测的平均精度均值(mAP)达到94.47%,与Faster R-CNN、SSD、YOLO v5、YOLO v4、YOLO v3相比分别提高4.49、4.56、4.46、11.78、22.07个百分点。