摘要
针对海量空间数据分布式存储中存在的不顾及空间邻近性、分布不均和数据倾斜的问题,基于MapReduce并行编程模型,对Hilbert空间曲线层次分解的思想和节点容量感知的方法进行了研究,提出了一种层次分解的空间数据并行划分策略,并通过临界值判定实现空间数据的均衡存储。最后通过实例分析说明该方法可以在保证空间数据邻近特性的同时,解决海量空间数据分布式存储不均和数据倾斜的问题。
- 单位
针对海量空间数据分布式存储中存在的不顾及空间邻近性、分布不均和数据倾斜的问题,基于MapReduce并行编程模型,对Hilbert空间曲线层次分解的思想和节点容量感知的方法进行了研究,提出了一种层次分解的空间数据并行划分策略,并通过临界值判定实现空间数据的均衡存储。最后通过实例分析说明该方法可以在保证空间数据邻近特性的同时,解决海量空间数据分布式存储不均和数据倾斜的问题。