摘要

为了能识别阿尔茨海默症(AD)早期症状,提出一种改进的3DPCANet网络模型,并结合患者功能磁共振成像(fMRI)转换,对AD不同阶段患者进行分类。首先预处理患者的fMRI,并对预处理后的图像进行局部一致性(ReHo)图像转换;然后采用改进的3DPCANet模型对fMRI转换后的图像进行特征提取;最后使用支持向量机进行分类。实验结果显示,改进后的3DPCANet模型可以对fMRI转换后的图像提取有效的分类特征,其中,晚期轻度认知障碍与AD、主观记忆衰退与AD、主观记忆衰退与早期轻度认知障碍的分类准确率分别达到90.00%、88.89%、88.00%,验证了本方法的有效性和可行性。