摘要

从热力学基本定律出发,将应变张量、标量损伤变量、损伤梯度作为Helmholtz自由能函数的状态变量,利用本构泛函展开法在自然状态附近作自由能函数的Taylor展开,未引入附加假设,推导出Ⅰ阶梯度损伤本构方程的一般形式.该形式在损伤为0时可退化为线弹性应力-应变本构方程,在损伤梯度为0时可退化为基于应变等效假设给出的线弹性局部损伤本构方程.一维解析解表明,随着应力增大,损伤场逐步由空间非周期解变为关于空间的类周期解,类周期解的峰值区域形成局部化带.局部化带内的损伤变量将不同于局部化带外的损伤变量,由此可以反映出介质的局部化特征.损伤局部化并不是与损伤同时发生,而是在损伤发生后逐渐显现出来,模型的...