摘要
针对变电站中开展机器人巡检工作时,普遍存在复杂场景下拍摄所得红外与可见光检测图像存在遮挡、旋转和视角差异等情况,进而导致图像匹配融合效率低的问题,本文提出了一种基于STM32控制的多光谱图像配准融合巡检机器人模型。该模型首先建立模板库,通过模板匹配定位图像中的目标电力设备,在此基础上使用SURF算法进行精细匹配,即利用RANSAC剔除设备特征误配点,并采用单映射FINDHOMOGRAPHY算法进行像素叠加,最终实现变电站设备的红外、可见光图像融合。实验结果表明,本文的改进算法生成特征点数量合适、质量提升明显,相比SIFT、SURF等传统图像融合算法,配准精度提高至少30%,图像处理速度提高至少30%,具备实用意义,可有效应用于设备识别、电力设备故障诊断领域。
- 单位