摘要

针对公路客货运量预测的问题,对现有的常用预测方法进行研究,提出改进BP神经网络预测模型。该模型首先采用动态陡度因子改变激励函数的陡峭程度,改善激励函数的响应特征,得到更好的非线性表达能力;其次利用附加动量因子,通过将以前的经验进行积累,降低了神经网络对误差曲面的局部细节敏感性,较好地遏制网络陷于局部最小;再次采取变学习率学习算法,先给一个较大初值,随着学习过程的进行,学习率不断减小,网络趋于稳定。改进BP算法既可以找到更优解,又可以缩短训练时间。结合某地区的公路运量相关数据,对改进BP神经网络预测模型进行了验证。实验结果表明,该模型的相对误差和迭代次数都取得了较大的改善,对公路客货运量预测很有...