重参数化VGG网络在滚动轴承故障诊断中的应用研究

作者:丁汕汕; 陈仁文*; 黄翊君; 刘飞; 刘昊; 肖安
来源:振动与冲击, 2023, 42(11): 313-323.
DOI:10.13465/j.cnki.jvs.2023.11.037

摘要

基于神经网络的滚动轴承故障诊断方法训练时,存在诊断准确率低和易受到变工况噪声干扰的问题,提出一种基于重参数化VGG(RepVGG)滚动轴承故障诊断方法。为满足神经网络对数据量的要求,采用数据增强技术来扩充原始数据,使用短时傅里叶变换(STFT)对原始的振动信号处理成单通道时频图,并使用伪彩色处理技术转换成三通道时频图,进一步将数据输入到RepVGG网络的不同结构中进行滚动轴承的故障诊断。在凯斯西储大学(CWRU)滚动轴承数据集上开展试验验证,试验结果表明,RepVGG在变工况及噪声干扰下的平均诊断准确率分别为98.02%、95%以上,高于基于VGG、ResNet的故障诊断模型,有较高的故障诊断准确率且泛化性更好。

全文