摘要

传输质量(QoT)预测在光网络中日趋重要,机器学习成为今后实现光网络中QoT预测的重要手段。提出一种基于机器学习分类器的QoT预测技术。通过传输方程生成所需的数据,用于之后的分类器训练和性能测试,并仿真验证了K最近邻(KNN)、逻辑回归(LR)和支持向量机(SVM)这3种常用的分类器的性能。仿真结果表明:相较于传统的QoT估计方法,基于机器学习的方法在有效地降低计算复杂度的前提下,还能提供相当高的预测精度,是一种具有广阔应用前景的QoT估计新方案。

全文