基于PCA-LM-BP的短期电力负荷预测研究

作者:张梅; 李金湖; 张莉娜; 杨铮宇
来源:信息技术, 2019, 43(06): 101-105.
DOI:10.13274/j.cnki.hdzj.2019.06.024

摘要

考虑到现代社会中气象因素影响着电力负荷的使用情况,提出了考虑气象因素的基于PCA-LM-BP的短期电力负荷预测方法。由于气象因素数据量较大,采用PCA方法对天气因素进行主元分析,选取出对负荷值影响较大的因素引入到负荷预测模型当中。由于传统的BP算法具有收敛速度慢,易陷入局部最优的缺点,采用LM算法对其进行改进,提升其预测精度。将PCA提取的主要天气因素及历史负荷数据作为LM-BP算法的输入,预测的负荷值为输出。通过算例仿真分析,分别对比BP算法,GA-BP算法,LM-BP算法的负荷预测值及误差值,可以发现LMBP预测的负荷值与实际值更接近,通过误差分析验证了文中所提方法的有效性。