摘要

为了解决利用机器学习算法建立的部分砂土液化预测模型仅在特定地区实现高精确预测而泛化能力减弱的问题,从而扩大砂土液化预测模型适用范围,准确预测砂土液化,以更好地防治地震灾害,基于类别型特征提升算法CatBoost并结合自动超参数优化框架Optuna进行调参训练,建立CatBoost-Optuna砂土液化预测模型;将标准贯入试验的地震液化数据集划分为训练集和测试集,利用5个评估指标对所建立模型的预测结果进行评估,与测试集中多层感知机和支持向量机砂土液化预测模型的评估结果进行比较,并以地震液化案例数据作为验证集,对比不同预测模型的预测效果。结果表明:与多层感知机和支持向量机砂土液化预测模型相比,所建立的模型在测试集中评估指标较大,有更好的预测效果;在验证集中,所建立模型的评估指标只有精准率略微减小,其他评估指标都保持稳定,而对比模型的评估指标只有召回率保持稳定,其他评估指标都有所减小,只有所建立模型的预测效果与在测试集中的预测效果保持一致,进一步证明所建立模型的泛化能力较强。

全文