摘要

针对双臂协同运动中蕴含的运动信息量大,难以充分解读且识别率不高的问题,提出一种新型的双输入卷积神经网络(ND-CNN)模型。首先,根据双臂运动的特点,分别设计数据整理和模型输入两种策略。然后,利用两个结构相同、参数共享的特征提取层提取信号本身的特征和信号之间的差别特征。最后,利用所提取的两类特征实现双臂协同动作的识别。在自主设计的双臂实验中,将ND-CNN与其余3种先进的神经网络对比。实验结果表明,本文所提的ND-CNN模型在识别精度和可靠性上优于其他网络模型,能够对双臂肌电动作有效识别。