摘要

针对光照影响下杂草识别特征信息缺失和精度低等问题,提出了基于深度卷积神经网络和颜色迁移的杂草识别方法。采集不同自然光照影响下(包括阴天、反光、倒影和多云天气等)的杂草图像1 334张和未受光照影响的杂草图像1 436张。首先,利用优化后的Reinhard算法对受光照影响的样本图像进行颜色迁移处理,降低光照影响因素,并将杂草图像通过ExG指数灰度化及Otsu阈值图像分割得到灰度化图像;然后,通过特征提取和融合,利用卷积神经网络(convolutional neural network,CNN)构建的Inception-V3分类器进行训练,以Softmax计算识别率;最后,对比有无颜色迁移算法和ExG灰度化的杂草识别率以及光照环境对杂草识别的影响程度。结果表明,所提方法将光照环境影响下的杂草识别精度提高了15.6%,实现了90.01%的识别率。