摘要

准确的空间负荷预测是配电系统精益化规划的基础。在此背景下,提出利用多源信息融合和深度置信神经网络的配电系统空间负荷预测方法。首先,在分析空间负荷元胞多源信息特征的基础上,采用基于程度副词语义标定的结构化方法对负荷元胞的非结构化属性进行结构化处理,以充分挖掘利用负荷元胞数据信息。然后,采用受限玻尔兹曼机方法和反向传播(back propagation,BP)算法相结合学习元胞特征,以提升元胞高维特征提取的性能,并采用训练后的深度置信神经网络预测待规划区域的空间饱和负荷密度。最后,以某城市的区域配电系统为例,对所提出的空间负荷预测方法进行验证;仿真结果表明:在空间负荷预测模型中考虑非结构化信息的影响可以提高空间负荷预测精度,且与现有的一些方法相比,所提方法的预测精度更高。

  • 单位
    国网山东省电力公司经济技术研究院; 浙江大学

全文