基于CART重要度排序和混合ELM模型的蒸散预测

作者:师翊; 王应宽*; 赵龙; 曹瑞雪; 王宇航; 沈剑波; 段震
来源:农业工程学报, 2023, 39(14): 89-96.

摘要

准确地预测区域蒸散有助于区域水资源的合理利用,减少水资源浪费。为从多项气象因子中筛选出核心因子,构建少因子蒸散预测模型,高效精确预测蒸散,该研究在九大农业区选取23个典型站点,搜集降水量、日照时数等8个气象因子数据,使用分类回归树(classification and regression tree,CART)对气象因子进行重要度排序。基于排序结果,选取排序前3~5项气象因子,基于极限学习机(extreme learning machine,ELM)模型对蒸散进行预测。同时,使用遗传算法(genetic algorithm,GA),粒子群算法(particle swarm optimization,PSO),麻雀搜索算法(sparrow search algorithm,SSA)对ELM模型进行优化,并使用这3种优化算法(GA-ELM、PSO-ELM、SSA-ELM)构建少因子混合优化蒸散预测模型。结果表明:1)基于CART算法重要度排序结果,蒸散的主要影响因子依次是降水量、日照时数、平均本站气压、日最高气温、平均相对湿度。2)3种优化算法预测模型中,PSO-ELM模型的预测精度最高,23个站点的蒸散预测的均方根误差为6.608~22.077 mm/d,纳什效率系数为0.824~0.998,R2为0.908~0.995,平均绝对误差为5.075~16.677 mm/d。3)ELM模型在云贵高原区和四川盆地及周边地区有较好的适用性,3种优化算法在华南区和云贵高原区有较好的适用性,其中PSO-ELM模型的适用性最高。研究结果可为中国九大农业区域的作物需水量计算提供参考。