摘要

研究电力负荷预测准确性问题,电力负荷与天气、经济、假期等多种因素密切相关,变化规律具有周期性和随机性,单一预测方法不能全面进行准确预测,导致电力负荷预测精度低。为了提高电力负荷预测精度,提出一种ARMA和BP神经网络的组合预测方法。首先采用ARMA模型对电力负荷的周期性变化规律进行预测,然后结合BP神经网络方法对电力负荷的随机变化规律进行预测,最后将2种预测结果进行相加,得到组合模型的电力负荷预测结果。采用某市电力负荷数据对组合模型预测性能进行验证,实验结果表明,组合模型充分利用了单一模型优势,使电力负荷的预测提高了精度,为电力负荷的预测提供了有效手段。

  • 单位
    泸州职业技术学院