摘要

道路交通环境具有复杂、强干扰、多遮挡、检测物体尺度变化大、光线不均匀、难以预测的特点,传统基于全卷积神经网络的分割方法,由于采用单一的检测结果评价标准,缺乏对分割结果一致性的检验,忽略了像素与像素的相互关系,造成误识别很可能导致交通事故发生。本文在传统交并比评价指标的基础之上,采用交通环境语义分割复合评价指标,提出基于条件生成对抗网络的交通环境多任务语义分割方法,采用对抗损失拟合语义分割结果像素之间的作用关系,使得结果更具备一致性和可用性,更利于实际应用,同时对比了三种典型交通环境检测任务,验证了算法的有效性,并对三种任务进行多任务学习,在不增加计算开销的基础上,获得相近的性能。

全文