摘要
农业生产中使用的光学遥感图像在采集过程中时常受到云层的影响,导致获取到的图像清晰度低,影响地物信息的判读和后续的使用。针对这一问题,提出一种基于改进条件生成对抗网络(ConditionalGenerativeAdversarial Net-work,CGAN)的光学遥感图像去云方法。首先,在原始CGAN的生成器中引入空间池化层,通过增加网络的多尺度特征学习能力以提高生成图像的细节信息;其次,在改进CGAN网络中加入回归损失使生成图像与真实图像更加接近,进一步提高生成效果。在光学遥感图像数据集上的试验结果表明:相比原始CGAN,改进CGAN生成的无云光学遥感图像更接近真实无云光学遥感图像,与原始CGAN相比,改进CGAN在薄云和厚云光学遥感图像上的峰值信噪比(Peak Signal-to-NoiseRatio,PSNR)分别提升了1.64和1.05dB,结构相似性(StructuralSIMilarity,SSIM)分别提升了0.03和0.04。同时,相较于传统的去云方法和深度学习的Pix2Pix方法,该方法在光学遥感图像去云和保真上均取得了更好的效果。研究结果证明了改进的CGAN方法实现光学遥感图像去云的可行性,可为农用光学遥感图像的处理提供方法借鉴。
- 单位