摘要

为实现对海面风速精确的短期预测,提出了一种基于长短期记忆(LSTM,longshort-termmemory)神经网络的短期风速预测模型,选取OceanSITES数据库中单个浮标站点采集的风速历史数据作为模型输入,经过训练设置最佳参数等步骤,实现了以LSTM方法,对该站点所在海区海面风速在各季节性代表月份海面风速的24 h短期预测。同时通过不同预测时长的实验以及与BP(back propagation)神经网络神经网络和径向基函数神经网络(radialbasisfunctionneuralnetwork,RBF)的预测效果对比实验,证明了LSTM预测方法相比上述两种神经网络预测方法,在海表面风速预测应用中的优越性。最后通过多个海域对应的站点风速数据预测实验,证明了LSTM神经网络模型的普遍适用性,由相关系数和预测误差的分析可知该方法具备应对急剧变化数据的预测稳定性,可以作为海洋表面风速短期预测的一种可靠方法。

  • 单位
    青岛大学; 工业控制技术国家重点实验室; 自动化学院; 自然资源部第一海洋研究所